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Abstract 
 

We develop a general fuzzy model that can be adapted properly to 
represent several didactic situations in Mathematics Education characterized by 
a degree of fuzziness and/or uncertainty and we apply it in particular to describe 
in a more effective way the problem-solving process. Two classroom 
experiments are also presented illustrating the use of our model in practice. 

Introduction 

They appear often didactic situations in Mathematics Education 
characterized by a degree of fuzziness and/or uncertainty (e.g. problem-solving, 
mathematical modelling, learning, mathematics, etc). In fact, students’ cognition 
utilizes in general concepts that are inherently graded and therefore fuzzy. On 
the other hand, from teacher’s point of view there usually exists vagueness about 
the degree of success of students in each of the stages of the corresponding 
didactic situation. All these gave us the impulsion to introduce principles of 
fuzzy logic and of uncertainty theory in order to describe in a more effective way 
the process of such kind of situations in classroom.  

The concept of uncertainty, which emerges naturally within the broad 
framework of fuzzy sets theory, is involved in any didactic situation, especially 
when dealing with real-world problems. Uncertainty is a result of some 
information deficiency. In fact, information pertaining to the model within 
which a real situation is conceptualized may be incomplete, fragmentary, not 
full reliable, vague, contradictory, or deficient in some other way. Thus the 
amount of information obtained by an action can be measured in general by the 
reduction of uncertainty resulting from the action. In other words the amount of 
uncertainty regarding some situation represents the total amount of potential 
information in this situation.  

In the next we shall develop a general fuzzy model that can be adapted 
in each case in order to represent the process of the corresponding didactic 
situation and we shall apply it in particular to represent the problem-solving 
process in classroom. 
For general facts on fuzzy sets and uncertainty theory we refer freely to Klir and 
Folger (1988). 

The General Model 

Let us consider a group of n students, n ≥ 2, in classroom. Denote by   
Si , i=1,2,3 , the main stages of the process of the didactic situation that we want 
to represent and by a, b, c, d, and e the linguistic labels of negligible, low, 
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intermediate, high and complete success respectively of a student in each of the 
Si’s.  

Set U = {a, b, c, d, e}. We are going to attach to each stage Si a fuzzy 
subset, Ai of U. For this, if nia, nib, nic, nid and nie denote the number of students 
that faced negligible, low, intermediate,  high and complete success at stage Si 
respectively, i=1,2,3, we define the membership function mAi  for each x in U, as 
follows:  
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Then the fuzzy subset Ai of U corresponding to Si has the form: 

Ai = {(x, mAi(x)):  x∈U}, i=1, 2, 3. 
In order to represent all possible student profiles (overall states) during the 
corresponding process we consider a fuzzy relation, say R, in U3 of the form  

R= {(s, mR(s)): s=(x, y ,z) ∈U3}. 
We make the hypothesis that the stages of the process of the 

corresponding didactic situation are depended to each other. This means that the 
degree of success of a student in a certain stage depends upon the degree of 
his/her success in the previous stages, as it usually happens in practice. Under 
this hypothesis and in order to determine properly the membership function mR 
we give the following definition:  

A profile  s=(x, y, z), with x, y, z in U, is said to be well ordered if x 
corresponds to a degree of success equal or greater than y, and y corresponds to 
a degree of success equal or greater than z.  
For example, (c, c, a) is a well ordered profile, while (b, a, c) is not.  
We define now the membership degree of a profile s to be  
mR(s)=m

1A (x)m
2A  (y)m

3A (z),   if s is well ordered, and 0 otherwise. In fact, if 

for example profile (b, a, c) possessed a nonzero membership degree, how it 
could be possible for a student, who has failed during the middle stage, to 
perform satisfactorily in the next stage?  
In the next, for reasons of brevity, we shall write ms instead of mR(s). Then the 

possibility rs of profile s is defined by  rs=
}max{ s

s

m
m

,  where max{ms} denotes 
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the maximal value of ms , for all s in U3. In other words the possibility of s 
expresses the “relative membership degree” of s with respect to max {ms}. 

As we have seen above the amount of information obtained by an 
action can be measured by the reduction of uncertainty resulting from the action.  
Accordingly students’ uncertainty during the process of the corresponding 
didactic situation is connected to students’ capacity in obtaining relevant 
information. Therefore a measure of uncertainty could be adopted as a measure 
of students’ capacities. Within the domain of possibility theory uncertainty 
consists of strife (or discord), which expresses conflicts among the various sets 
of alternatives, and non-specificity (or imprecision), which indicates that some 
alternatives are left unspecified, i.e. it expresses conflicts among the sizes 
(cardinalities) of the various sets of alternatives (Klir 1995, p.28). Strife is 
measured by the function ST(r) on the ordered possibility distribution r:  r1=1 ≥  
r2 ≥ ……. ≥  rn ≥ rn+1 of the student group defined by ST(r) = 
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The sum T(r)=ST(r)+N(r) is a measure of the total possibilistic 
uncertainty for ordered possibility distributions. Therefore the total possibilistic 
uncertainty of the student group during the process can be adopted as a measure 
of students’ capacities. This is reinforced by Shackle (1961) who argues that 
human reasoning can be formalized more adequately by possibility theory 
rather, than by probability theory. The lower is the value of T(r) (which means 
greater reduction of the initially existing uncertainty), the better the performance 
of the student group during the process of the corresponding didactic situation. 

Assume finally that one wants to study the combined results of 
behaviour of k different student groups, k ≥ 2, during the same process. For this 
we introduce the fuzzy variables A1 (t), A2 (t) and A3 (t) with t=1, 2,…, k. The 
values of these variables represent fuzzy subsets of U corresponding to the 
stages of the process for each of the k student groups; e.g. A1 (2) represents the 
fuzzy subset of U corresponding to the stage of planning for the second group 
(t=2). It becomes evident that, in order to measure the degree of evidence of 
combined results of the k groups, it is necessary to define the possibility r(s) of 
each student profile s with respect to the membership degrees of s for all student 

groups. For this reason we introduce the pseudo-frequencies f(s) =�
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pseudo-frequency. Obviously the same method could be applied when one 
wants to study the combined results of behaviour of a student group during k 
different didactic situations.  
 

A Fuzzy Model for Problem-Solving 

In earlier papers we have adapted properly the above general model in 
order to represent the processes of Learning Mathematics (Voskoglou 2009a), of 
Mathematical Modelling (Voskoglou 2010, 2011), of Case-Based Reasoning 
(Voskoglou 2009c), as well as for several applications in Management 
(Voskoglou 2003). Here we are going to do the same for the process of 
Problem-Solving. 
 
History of Problem-Solving 
 

Problem–Solving (P-S) is a principal component of mathematics 
education with a long history and has supported numerous research programs at 
all levels. Given the importance of P-S, the orientations and structure of many 
curriculum proposals and teaching models throughout the world have been 
either directly or indirectly influenced by it. 

In earlier papers (Voskoglou  2007a, 2008), we have examined the role 
of P-S in learning mathematics and we have attempted a review of the progress 
of research on P-S in mathematics education from the time that Polya presented 
his first ideas on the subject until nowadays. Here is a rough chronology of that 
progress: 
1950’s – 1960’s: Polya’s ideas on the use of heuristic strategies in P-S (Polya 
1945, 1954, 1963, 1962/65)  
1970’s:  Emergency of mathematics education as a self – sufficient science 
(research methods were almost exclusively statistical). Research on P-S was 
mainly based on Polya’s ideas.  
1980’s:  A framework describing the P-S process, and reasons for success or 
failure in P-S, e.g. Schoenfeld 1980, 1985b, Lester, Garofalo & Kroll 1989, etc. 
1990’s: Models of teaching using P-S, e.g. constructivist view of learning (see 
Voskoglou 2007c and its references), Mathematical modelling and applications 
(see  Voskoglou 2006 and its references), etc. 
2000’s: While early work on P-S focused mainly on analyzing the P-S process 
and on describing the proper heuristic strategies to be used in each of its stages, 
more recent investigations have focused mainly on solvers’ behaviour and 
required attributes during the P-S process; e. g. MPS Framework of Carlson and 
Bloom (2005), theory of goal-directed behaviour , (Schoenfeld 2007), etc.  
 
The Multidimensional Problem Solving Framework of Carlson and Bloom 
 

Carlson and Bloom (2005) drawing from the large amount of literature 
related to P-S developed a broad taxonomy to characterize major P-S attributes 
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that have been identifying as relevant to P-S success. This taxonomy gave 
genesis to their Multidimensional Problem-Solving Framework (MPSF), which 
includes four phases: Orientation, Planning, Executing and Checking. It has 
been observed that once the solvers oriented themselves to the problem space, 
the plan-execute-check cycle was usually repeated through out the remainder of 
the solution process; only in a few cases a solver obtained linearly the solution 
of a problem (i.e. he/she made this cycle only once). Thus embedded in the 
framework are two cycles (one cycling back and one cycling forward), each of 
which includes the three out of the four phases, that is planning, executing and 
checking. It has been also observed that, when contemplating various solution 
approaches during the planning phase of the P-S process, the solvers were at 
times engaged in a conjecture-imagine-evaluate (accept/reject) sub-cycle. 
Therefore, apart of the two main cycles, embedded in the framework is the 
above sub-cycle, which is connected to the phase of planning (Carlson and 
Bloom 2005, Figure 1).   

It is of worth to notice that there are many similarities among the five 
stages of Schoenfeld’s expert performance model (Schoenfeld 1980) and the 
four phases of MPSF. In fact, the stage of analysis of the problem of Shoenfeld’s 
model corresponds to the phase of orientation, the stage of design corresponds to 
the phase of planning, the stage of exploration corresponds to the conjecture-
imagine-evaluate sub-cycle connected to the phase of planning, the 
implementation of the solution corresponds to the phase of executing and finally 
the stage of verification corresponds to the phase of checking.  The qualitative 
difference between these two models is actually that, while the former focuses 
on describing the P-S process and the proper heuristic strategies to be used in 
each of its stages, the latter focuses on solver’s behaviour and required attributes 
during the P-S process  (Voskoglou 2008; section 4). 

 
The model 
 

The construction of our fuzzy model for the P-S process is based on 
MPSF. For this, we consider a group of n students, n ≥ 2, in classroom during 
the P-S process and we denote by Si, i=1, 2, 3 the phases of planning, executing 
and checking. To each of the Si’s we attach a fuzzy subset, say Ai, of U by 
defining the membership function mAi exactly as we have described in our 
general model. Notice that in the same way one could also attach to the phase of 
orientation a fuzzy subset of U. However this, although it makes the presentation 
of our fuzzy model technically much more complicated, it is not so important, 
since orientation, although it deserves some attention, is actually an introductory 
step of the P-S process that could be considered as a sub-phase of planning. The 
above manipulation is a simplification made to the real system in order to 
transfer from it to the “assumed real system”. This is a standard technique 
applied during the modelling process of real world problems, which enables the 
formulation of them in a form ready for mathematical treatment (Voskoglou 
2007b, section 1).The development of the rest of the model relies upon the lines 
of our general model presented above. 
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Classroom applications  
 

The following two experiments performed recently at the Graduate 
Technological Educational Institute (T.E.I.) of Patras in Greece. In the first of 
them our subjects were 35 students of the School of Technological Applications, 
i.e. future engineers, and our basic tool was a list of 10 problems (see Appendix)  
given to students for solution  (time allowed 3 hours). Before starting the 
experiment we gave the proper instructions to students emphasizing among the 
others that we are interested for all their efforts (successful or not) during the P-
S process, and therefore they must keep records on their papers for all of them, 
at all stages of the P-S process. This manipulation enabled as in obtaining 
realistic data from our experiment for each stage of the P-S process and not only 
those based on students’ final results that could be obtained in the usual way of 
graduating their papers.   
Our characterizations of students’ performance at each stage of the P-S process 
involved: 

• Negligible success, if they obtained (at the particular stage) positive 
results for less than 2 problems. 

• Low success, if they obtained positive results for 2, 3, or 4 problems. 
• Intermediate success, if they obtained positive results for 5, 6, or 7 

problems. 
• High success, if they obtained positive results for 8, or 9 problems. 
• Complete success, if they obtained positive results for all problems. 

Examining students’ papers we found that 15, 12 and 8 students had 
intermediate, high and complete success respectively at stage of planning. 
Therefore we obtained that n1a=n1b=0, n1c=15, n1d=12 and n1e=8. Thus, by the 
definition of )(xm

iA , planning corresponds to a fuzzy subset  of U of the form:  

A1 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e, 0.25)}.  
In the same way we represented the stages of executing and checking as fuzzy 
sets  in U by  A2 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0)} and  
A3 = {(a, 0.25),(b, 0.25),(c, 0.25),(d,0),(e,0)} respectively. 
Using the definition given in section 2 we calculated the membership degrees of 
the 53 (ordered samples with replacement of 3 objects taken from 5) in total 
possible students’ profiles (see column of ms(1) in Table 1). For example, for 
s=(c, c, a) one finds that 
ms = m

1A (c). m
2A (c). m

3A (a) =(0.5).(0.5).(0.25)=0.06225. 

It turns out that (c, c, a) was one of the profiles of maximal membership degree 

and therefore the possibility of each s in U3 is given by rs=
06225,0

sm
. 

Calculating the possibilities of all profiles (see column of rs(1) in Table 1) one 
finds that the ordered possibility distribution for the student group is:  
r1=r2=1,r3=r4=r5=r6=r7=r8=0,5,r9=r10=r11=r12=r13=r14=0,258, 
r15=r16=……..=r125=0. Thus using a calculator we found that  
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≈ 0.5+3.(0.242)+(0.857).1.146 ≈ 2.208 . Therefore we finally obtained that 
T(r) ≈ 2.653. 
A few days later we performed the same experiment with a group of 30 students 
of the School of Management and Economics. Working as above we found that  
A1={(a,0),(b, 0.25),(c, 0.5),(d, 0.25),(e,0)},  
A2={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e,0)}   and 
A3={(a, 0.25),(b, 0.25),(c,0.25),(d,0),(e,0)}. 
Then we calculated the membership degrees of all possible profiles of the 
student group (see column of ms (2) in Table 1). It turned out that the maximal 
membership degree was again 0.06225, therefore the possibility of each s is 
given by the same formula as for the first group. Calculating the possibilities of 
all profiles (see column of rs(2) in Table 1) we found that the ordered possibility 
distribution of the second group is: 
 r1=r2=1, r3=r4=r5=r6=r7=r8=0,5,  r9=r10=r11=r12=r13=0,258, 
r14=r15=……..=r125=0 
Finally, working in the same way as above we found that T(r) = 0.432+2.179 = 
2.611. Therefore, since 2.611<2.653, it turns out that the second group had in 
general a slightly better performance than the first one.  
Next, in order to study the combined results of behaviours of the two groups, we 
introduced the fuzzy variables Ai (t), i=1, 2, 3 and t=1, 2, as we have described 
in the previous section. Then the pseudo-frequency of each student profile s is 
given by f(s) = ms (1) + ms (2) (see corresponding column in Table 1). It turns 
out that the highest pseudo-frequency is 0.124 and therefore the possibility of 

each student’s profile is given by 
124.0

)(
)(

sf
sr = . The possibilities of all 

profiles having non-zero pseudo-frequencies are presented in the last column of 
Table 1. 

Discussion and conclusions 

In this paper we developed a fuzzy model for representing the P-S 
process. and we used the total possibilistic uncertainty as a measure of students’ 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 6 No. 1      44 

P-S capacities. We also presented two classroom experiments illustrating our 
results in practice. Nevertheless further research is needed for the P-S process. 
In fact, as a general conclusion of all findings from research studies on P-S  it 
turns out that success in P-S appears to stem from the ability to draw on a large 
reservoir of well-connected knowledge, heuristics and facts, from the ability to 
manage the emotional responses, as well as from an adequate degree of practice 
(Voskoglou 2007a, 2008). However, although many studies have investigated 
and compared the characteristics of novice and expert problem solvers ( Lesh 
and Akerstrom 1982, Schoenfeld 1985a,  Stillman and Galbraith 1998, etc), 
many of the qualitative differences appearing among them still do not seem to 
be completely understood.  It is hopped therefore that the use of our fuzzy model 
as a tool in future research on P-S could lead to practical ways of restoring the 
weaknesses appearing to novices with respect to the expert problem solvers. 

Similar models were used in earlier papers for an effective description 
of situations involving fuzziness and uncertainty, mainly in the area of 
Mathematics Education (Learning, Mathematical Modelling), but also in the 
areas of Artificial Intelligence (Case-Based Reasoning) and Management. All 
these models were developed by adapting properly the general fuzzy model 
presented in this paper.  It is hopped to be able in future to extend our general 
model in representing further situations involving fuzziness and uncertainty 
either in Education and/or in other scientific areas.  

Our fuzzy models, apart from quantitative information (e.g. 
possibilities, total possibilistic uncertainty of the system, etc), they also provide 
a realistic qualitative view of the process that they represent through the study of 
all possible profiles during the process of the subjects involved. Another 
advantage of them is that they give the opportunity for a combined study of 
results of two or more groups (or systems) during the same situation, or 
alternatively for a combined study of results of the same group (or system) 
during two or more different situations. Notice that analogous efforts to use 
principles of fuzzy logic in Education have been attempted in past by other 
researchers as well (Espin and Oliveras 1997,  Ma and Zhou 2000, Perdikaris 
2011, Spagnolo 2003, Subbotin et al. 2006, etc). 

We must finally underline the importance of use of stochastic (Markov 
chain) models as an alternative approach for the same purposes; e.g. Voskoglou 
and Perdikaris 1991, Voskoglou 1996, 2000, 2007b, 2009b, 2009d, 2010a, etc. 
These models provide also useful quantitative information like measures for the 
P-S or model-building abilities of student groups, short and long-run forecasts 
(probabilities) for the evolution of various phenomena, etc. Nevertheless they 
are self restricted in describing the ideal behaviour only of the subjects involved 
, in which they proceed linearly through the several stages of the corresponding 
process arriving  to acceptable solutions and reporting on them. Therefore one 
could claim that the fuzzy models are more useful for a deeper study of the 
corresponding real situations, because they provide also the possibility of a 
realistic qualitative analysis of the problems involved. 
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Table 1 
Profiles with non zero pseudo-frequencies 

 
A1    A2    A3         ms(1)         rs(1)     ms(2)       rs(2)        f(s)          r(s) 
b      b       b            0                0        0.016      0.258     0.016      0.129 
b      b       a            0                0        0.016      0.258     0.016      0.129 
b      a       a            0                0        0.016      0.258     0.016      0.129 
c      c       c         0.062            1        0.062          1        0.124          1 
c      c       a         0.062            1        0.062          1        0.124          1 
c      c       b            0                0        0.031         0.5      0.031        0.25 
c      a       a            0                0        0,031         0.5      0.031        0.25 
c      b       a            0                0        0.031         0.5      0.031        0.25 
c      b       b            0                0        0.031         0.5      0.031        0.25 
d      d       a        0.016         0.258        0              0        0.016      0.129 
d      d       b        0.016         0.258        0              0        0.016      0.129 
d      d       c        0.016         0.258        0              0        0.016      0.129 
d      a       a           0                 0        0.016      0.258     0.016      0.129 
d      b       a           0                 0        0.016      0.258     0.016      0.129 
d      b       b           0                 0        0.016      0.258     0.016      0.129 
d      c       a         0.031           0.5      0.031        0.5       0.062        0.5 
d      c       b         0.031           0.5      0.031        0.5       0.062        0.5 
d      c       c         0.031           0.5      0.031        0.5       0.062        0.5 
e      c       a         0.031           0.5         0              0        0.031       0.25 
e      c       b         0.031           0.5         0              0        0.031       0.25 
e      c       c         0.031           0.5         0              0        0.031       0.25 
e      d       a         0.016         0.258       0              0        0.016      0.129 
e      d       b         0.016         0.258       0              0        0.016      0.129 
e      d        c        0.016         0.258       0              0        0.016      0.129 
 
(The outcomes of the table are written with accuracy up to the third decimal 
point) 
 
 

APPENDIX 
List of the problems given to students for solution in our classroom experiments 
 
Problem 1:  We want to construct a channel to run water by folding across its 
longer side the two edges of an orthogonal metallic leaf having sides of length 
20cm and 32 cm, in such a way that they will be perpendicular to the other parts 
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of the leaf. Assuming that the flow of the water is constant, how we can run the 
maximum possible quantity of the water? 

Problem 2: Given the matrix 	=

�
�
�

�

�

�
�
�

�

�

100
210
221

 and a positive integer n, find the 

matrix 	n.  

Problem 3: Calculate the integral � +
dx

x
x

42
.                                                                                           

Problem 4: Let us correspond to each letter the number showing its order into 
the alphabet (A=1, B=2, C=3 etc). Let us correspond also to each word 
consisting of 4 letters a 2X2 matrix in the obvious way; e.g. the matrix  

�
�

�
�
�

�

513

1519
 corresponds to the word SOME. Using the matrix E= �

�

�
�
�

�

711

58
 as 

an encoding matrix how you could send the message LATE in the form of a 
camouflaged matrix to a receiver knowing the above process and how he (she) 
could decode your message? 
Problem 5: The demand function P(Qd)=25-Qd

2 represents the different prices 
that consumers willing to pay for different quantities Qd of a good. On the other 
hand the supply function   P(Qs)=2Qs+1 represents the prices at which different 
quantities Qs of the same good will be supplied. If the market’s equilibrium 
occurs at (Q0, P0),  the producers who would supply at lower price than P0 
benefit. Find the total gain to producers’. 
Problem 6: A ballot box contains 8 balls numbered from 1 to 8. One makes 3 
successive drawings of a lottery, putting back the corresponding ball to the box 
before the next lottery. Find the probability of getting all the balls that he draws 
out of the box different. 
Problem 7:  A box contains 3 white, 4 blue and 6 black balls. If we put out 2 
balls, what is the probability of choosing 2 balls of the same colour? 
Problem 8: The rate of increase of the population of a country is analogous to 
the number of its inhabitants. If the population is doubled in 50 years, in how 

many years it will be tripled?  (ANSWER: In 50
2ln
3ln

79≈ years).    

Problem 9: A company circulates for first time in market a new product, say K. 
Market’s research has shown that the consumers buy on average one such 
product per week, either K, or a competitive one. It is also expected that 70% of 
those who buy K they will prefer it again next week, while 20% of those who 
buy another competitive product they will turn to K next week. 
i) Find the market’s share for K two weeks after its first circulation, provided 
that the market’s conditions remain unchanged. 
ii) Find the market’s share for K in the long run, i.e. when the consumers’ 
preferences will be stabilized. 
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Problem 10: Among all cylinders having a total surface of 180
 m2, which one 
has the maximal volume 
 
†  Michael Gr. Voskoglou, Ph.D,.  Graduate Technological Educational Institute 
of Patras, Greece 
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